Theoretical investigation on the mechanism and dynamics of oxo exchange of neptunyl(VI) hydroxide in aqueous solution.
نویسندگان
چکیده
Four types of reaction mechanisms for the oxo ligand exchange of monomeric and dimeric neptunyl(VI) hydroxide in aqueous solution were explored computationally using density functional theory (DFT) and ab initio classical molecular dynamics. The obtained results were compared with previous studies on the oxo exchange of uranyl hydroxide, as well as with experiments. It is found that the stable T-shaped [NpO3(OH)3](3-) intermediate is a key species for oxo exchange in the proton transfer in mononuclear Path I and binuclear Path IV, similar to the case of uranyl(VI) hydroxide. Path I is thought to be the preferred oxo exchange mechanism for neptunyl(VI) hydroxide in our calculations, due to the lower activation energy (22.7 and 13.1 kcal mol(-1) for ΔG(‡) and ΔH(‡), respectively) of the overall reaction. Path II via a cis-neptunyl structure assisted by a water molecule might be a competitive channel against Path I with a mononuclear mechanism, owing to a rapid dynamical process occurring in Path II. In Path IV with the binuclear mechanism, oxo exchange is accomplished via the interaction between [NpO2(OH)4](2-) and T-shaped [NpO3(OH)3](3-) with a low activation energy for the rate-determining step, however, the overall energy required to fulfill the reaction is slightly higher than that in mononuclear Path I, suggesting a possible binuclear process in the higher energy region. The chemical bonding evolution along the reaction pathways was discussed by using topological methodologies of the electron localization function (ELF).
منابع مشابه
Biosorption of Uranium (VI) from Aqueous Solution by Pretreated Aspergillus niger Using Sodium Hydroxide
The removal of uranium and any other heavy metals from wastewater might be achieved via several chemical or physical treatment techniques. Biosorption process has been considered as a potential alternative way to remove contaminants from industrial effluents. Moreover the surface of biosorbent was characterized by SEM. The biosorption characteristics of uranium (VI) on pretreated A...
متن کاملAn Experimental Investigation of Reactive Absorption of Carbon Dioxide into an Aqueous NH3/H2O/NaOH Solution
In this research, the reactive absorption of carbon dioxide in an aqueous solution of NH3, H2O, and NaOH has experimentally been investigated. The experiments were carried out in an absorption pilot plant in different operational conditions. The composition and temperature of both gas and liquid phases were obtained during the column height. The concentration of molecular ...
متن کاملCyclic Voltammetry Investigation of the Mechanism of CuInSe2 and CuIn(Al)Se2 Electrodeposition from Aqueous Solution
Electrodeposition of CuInSe2 (CIS) and CuInAlSe2 (CIAS) from aqueous solution has been systematically investigated by cyclic voltammetery implementing different scan rates. It has been shown that electrodeposited CIS and CIAS have been formed on the substrate through electrochemical-chemical interaction of reduces species on the substrate. From the obtained results, it could be inferred that I...
متن کاملUranium Removal from Aqueous Solution Using Ion-Exchange Resin DOWEX® 2x8 in the Presence of Sulfate Anions
The current study was attributed to uranium (VI) ions adsorption using a anion exchanger resin, Dowex®2x8, in the presence of sulfate anions. Evaluation of operational parameters including contact time, pH, initial concentration of uranium ions, and presence of various anions (including phosphate, sulfate, chloride, fluoride, and nitrate) in the solution was assessed on sorption performance of ...
متن کاملStructure and water exchange dynamics of hydrated oxo halo ions in aqueous solution using QMCF MD simulation, large angle X-ray scattering and EXAFS.
Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) and EXAFS measurements to study structure and dynamics of the hydrated oxo chloro anions chlorite, ClO2(-), chlorate, ClO3(-), and perchlorate, ClO4(-). In addition, the structures of the hydrated hypochlorite, ClO(-), bromate, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2015